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In these notes we denote C denotes the set of all complex numbers, R
denotes the set of all real numbers, Z denotes the set of all integers and N
denotes the set of all positive integers.

1. AXIOMS

Definition 1.1. In these notes F stands for either R or C. Since both R or
C are fields, we will sometimes refer to F as a field of scalars. <

Definition 1.2. Let ¥ be a nonempty set. The set ¥ is called a vector
space over IF if the following ten axioms are satisfied.

AE.

AA.
AC.
AZ.
AO.

SE.

SA.
SD.
SD.
SO.

There exists a function + : ¥ x ¥ — ¥, called addition in ¥. Its
value at a pair (u,v) € ¥ x ¥ is denoted by u + v.

For all u,v,w € ¥ we have u + (v 4+ w) = (u 4 v) + w.

For all u,v € ¥ we have u +v = v + u.

There exists an element 0y € ¥ such that v+ 0y =v for all v € 7.
For each v € ¥ there exists w € ¥ such that v +w = 0y.

There exists a function - : Fx ¥ — ¥, called scaling in ¥. Its value
at a pair (o,v) € F x ¥ is denoted by « - v, or simply awv.

For all a, f € F and all v € ¥ we have a(5v) = (af)v.

For all @ € F and all u,v € ¥ we have a(u + v) = au + av.

For all a, 8 € F and all v € ¥ we have (o + f)v = av + fSv.

For all v € ¥ we have 1v = v.
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2. BASIC PROPOSITIONS

A few immediate consequences of Definition 1.2 are presented in the fol-
lowing propositions.

Proposition 2.1. Let ¥ be a vector space over F. For every o € F and
every v € ¥ the following equivalence holds:

av=0y & a=0V v=_0y. (2.1)

Proof. First we prove the “if” part (<) in (2.1). The proof is in two parts.
Let v € ¥ be arbitrary and let & = 0. Then by SE we have that 0v € 7.
By AO there exists w € ¥ such that 0v + w = 0y. Then

Oy =0v+w
=0+0)v+w
= (0v + 0v) +w
= 0v+ (0v+ w)
=0v+ 0y
=0v
This sequence of equalities proves 0v = 0.

Let v = 0y and let a € F be arbitrary. Then by SE we have that
aly € 7. By AO there exists w € ¥ such that a0y + w = 0y. Then

0y =aly +w
=a(0y +0y) +w
= (oz()«;/ + aOfy) +w
= a0y + (a0y +w)
=aly + 0y

= aly

This sequence of equalities proves a0y = 0. This completes the “if” part
(<) in (2.1).

Now we prove the “only if” part (=) in (2.1). This implication is of the
form p = ¢V r, where p, ¢, 7 are mathematical statements. The implication
p = qVr is equivalent to the implication p A =¢ = r, since the negations of
these implications are identical. We proceed to prove

av=0y N a#0 = v=0y. (2.2)
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Let « € F and v € ¥ be arbitrary and assume av = 0y and o # 0. Since
a € F\ {0}, we have that 1/a € F. Then

0y = (1/a)0y 2.1
= (1/a)(av)
= ((1/a)a)v
=1v

This sequence of equalities proves (2.2). Since (2.2) is equivalent to the
“only if” part (=) in (2.1), the proposition is proved. O

Proposition 2.2. Let ¥ be a vector space over F. For every v € ¥ the
following equivalence holds

v+w=0y < w=(-1). (2.3)

Proof. Let v € ¥ be arbitrary. First we will prove the “if” part (<) in
(2.3). Let w = (—1)v. Then

v+w=0v+(-1)v

=1lv+(—-1)v

= (14 (-D)v

= 0v

=0y 2.1

The presented sequence of equalities proves the “if” part (<) in (2.3).
Next we prove the converse, that is we prove the “only if” part (=) in
(2.3). Assume v + w = 0y. Then

w=0y+w
=0v+w 2.1
=((-D+1v+w
=((-Dv+1v) +w
=(-1v+ (v+w)
=(—=1Dv+0y
=(=1)v

The presented sequence of equalities proves the “only if” part (=) in (2.3).
Since v € ¥ was arbitrary, the proposition is proved. O
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Definition 2.3. Let ¥ be a vector space over F and let v € ¥. The unique
solution of equation v+x = 0y is denoted by —v and it is called the opposite
of v. For u,v € ¥ instead of u + (—v) we write u — v. <

Definition 2.4. Let ¥ be a vector space over F, let v, € ¥ for every k € N,
and let n € N. The sum
n
>
k=1

is defined as follows: If n =1 set

1
E V — V1.
k=1

If n € N\ {1} we use the definition by the finite recursion:

m m—1
Vm € {2,...,n} we set ka:<2vk)+vm <
k=1 k=1

For example, if vy, v9,v3,v4,v5 € ¥, then
V1 + V2 + U3 + Vg + U5 = (((Ul + vg) + v3) +v4) + vs

Definition 2.5. Let n € N, ay,...,a, € F, and v1,...,v, € ¥. The
expression

n
E ARV = QU1 + -+ -+ + QpUp

k=1
is called a linear combination of the vectors vi,...,v, in #. A linear com-
bination is said to be trivial if oy = --- = a,, = 0; otherwise, it is called
nontrivial. <

3. EXAMPLES

Example 3.1. Setting 7 = F, then ¥ is a vector space over F. The addition
in ¥ = F is the addition of complex numbers in F and the scaling in ¥ = F
is just the multiplication of complex numbers. The axioms of the vector
space then follow from the axioms of the axioms of real numbers if F = R
or axioms of the complex numbers if F = C. <

Example 3.2. This is the quintessential example of a vector space. Many
other specific vector spaces are special cases of this example. Let D be an
arbitrary nonempty set. Let ¥ be the set of all functions from D to F. This
set is denoted by FP. The addition in FP is defined as follows: let f, g € FP,
the function f + g is defined by

(f+9)(t) = f(t)+g(t) forall teD.

The scaling in F” is defined as follows: let o € F and f € FP, the function
af is defined by
(af)(t) == af(t) forall teD.



VECTOR SPACES 5

The above definitions of addition and scaling of functions are called pointwise
definitions. As an exercise you should go through the proofs of all the axioms
of the vector space for this specific case.

It is important to highlight some prominent functions in F”. The first
among them are the constant functions. For an arbitrary fixed ¢ € F, define
f(t)y=cforallt e D.

The second are the indicator functions. For an arbitrary subset A C D,

define
®) 1 if teA,
W0 i tep A

In particular, for an arbitrary fixed s € D and the singleton set A = {s},
we have

(t) = 1 if t=s,
XY T 0 i te D)\ {s)
N

Example 3.3. This is a special case of Example 3.2. Let n € N and define
D={teN:t<n}.

This set is often written simply as D = {1,...,n}. The vector space FP can
be naturally identified with F™, the space of all n-tuples of elements of F.

Specifically, we identify the n-tuple (v1,...,v,) € F" with the function
f € FP defined by

f(k)=v, forall ke{l,...,n}.

For
&1
x=|:| eFP,
n

this notation reads as follows:
x(k) =¢ forall ked{l,...,n}.

At first glance, this approach may seem somewhat obscure, but it is com-
monly used in software packages, such as the computer algebra system Wol-
fram Mathematica. For instance, in Mathematica, the command

{1,0,Pi,E,I}[[3]] returns Pi.

Here, the double square brackets [[ 1] enclose the independent variable,
instead of the usual parentheses, reinforcing the idea of indexing as function
evaluation. <

Example 3.4. This is another special case of Example 3.2. Let m,n € N
and

D:{(s,t)ENxN:sgm/\tgn};
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that is D = {1,...,m}x{1,...,n}. Then FP can be identified with the
space F™*™ of all m xn matrices with entries in F. <

Example 3.5. By F[z] we denote the set of all polynomials in variable z
with coefficients from F. Then F[z] is a vector space with addition and scalar
multiplication defined pointwise. <

The next example is a generalization of Example 3.2,

Example 3.6. Let D be an arbitrary nonempty set and let ¥ be a vector
space over F. Let # be the set of all functions from D to ¥’; that is
# = ¥P. With the addition and scaling of functions defined pointwise, #
is a vector space over F. The functions in ¥? are said to be vector valued
functions. <

4. SET OPERATIONS IN A VECTOR SPACE

In a set theory class, we learned about set operations. For two sets A and
B, we defined ANB, AUB, A\ B, and AAB. In a vector space ¥ over F,
the exploration of subsets is further enriched by two additional operations:
the addition of sets and the scaling of sets.

Definition 4.1. Let ¥ be a vector space over F and let &/ and £ be
nonempty subsets of . We define the sum of &/ + % by

o + B = {u—i—v:ue,ﬁz{,ve%’}.
For a € F we define o by
ad = {au:ueﬂf}.
Let n € N and let @, ...,.9, be subsets of ¥'. By recursion we define
A+ = (M—l-"'-f-%_ﬂ +, k=2,...,n.
By Axiom A A, the set @ + --- 4+ &, consists of all the sums v; +--- 4+ v,
where v; € 7 for all j € {1,...,n}. <
5. SPECIAL SUBSETS OF A VECTOR SPACE

The following definition distinguishes important subsets of a vector space
¥ over F.

Definition 5.1. Let ¥ be a vector space over F. A subset % of ¥ is said
to be a subspace of ¥ if the following three conditions are satisfied:

SuZ. 0y € %.
SuA. For every u,v € % we have u+v € % .
SuS. For every a € F and every u € % we have au € % . <

The property SuA in Definition 5.1 is stated in words as: % is closed
under addition. Using set addition this property can be written as % +% C
% . The property SuS is stated in words as: % is closed under scalar
multiplication. In terms of set operations, this can be written as: a% C %
for all @ € F.
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Proposition 5.2. An intersection of subspaces of a vector space is also a
subspace.

Proposition 5.3. A sum of subspaces of a vector space is also a subspace.

A union of subspaces of a vector space is not necessarily a vector space.
Problems 7.6 and 7.8 deal with this question.

Definition 5.4. Let & be a nonempty subset of ¥. The span of </ is the
set of all linear combinations of vectors in . The span of & is denoted by

span(&/).
The span of the empty set is the trivial vector space {0y }; that is,

span(f) = {0y }.
If
¥ = span(«),
then & is said to be a spanning set for 7. <

It is useful to write the definition of a span in set-builder notation. Let
&/ be a nonempty subset of ¥. Then

dm e N,
daq,...,q,, €F,

span() =Cv eV : Jug, ... um € A,

m
such that v = Z QUL
k=1

This notation is somewhat heavy. In words: span(</) is the set of all vectors
v € ¥ such that there exists m € N, there exist scalars aq, ..., a, in F, and
there exist vectors ug, ..., uy, in & such that v =Y"}" | aguy.

Theorem 5.5. Let o/ C V. Then span(<) is a subspace of V.

Proof. Write a proof as an exercise. O
Proposition 5.6. If % is a subspace of ¥ and o/ C % , then span(«/) C % .
Proof. Write a proof as an exercise. O

Definition 5.7. Let ¥ be a vector space over R. A nonempty subset € of
¥ is said to be a conein ¥ if & C € for all o > 0. <

Definition 5.8. Let ¥ be a vector space over R. A nonempty subset . of
Y is said to be a conver subset of ¥ if au+ (1 — a)v € & for all a € [0, 1]
and all u,v € .. <

Exercise 5.9. Let ¥ be a vector space over R and let % be a cone in 7.
Prove that ¢ is a convex set if and only if € +% C €. <
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6. DIRECT SUMS OF SUBSPACES

Let ¥ be a vector space over F. Let 2™ and % be subspaces of ¥". Recall
that v € 2 + % if and only if there exist z € 2 and y € # such that
v = x +y. A stronger version of the last statement is in the following
definition.

Definition 6.1. Let ¥ be a vector space over F and let 2 and % be
subspaces of ¥'. The sum 2 +% is called a direct sum if for every v € Z'+%
there exist unique x € £ and unique y € % such that v = z+y. The direct
sum is denoted by 2 @ #. Formally, the sum 2 + % is direct if the
following implication holds: for all 1,29 € 2" and for all y1,ys € ¥

Ti+yr=22+Yy2 = T1=22 A Y1 =Y. (6.1)
<

Example 6.2. Let F =R, 7 = R?,
'%/. - {(1:171"2756370) cX1,T2,T3 S R} andg/ = {(O7y17y27y3) Y1,Y2,Y3 S R}

Then R* = 2" + % . However, this sum is not a direct sum. For v =
(v1,v2,v3,v4) € R* we can take x = (v1,82,53,0) € 2 and y = (0,v9 —
S9,v3 — S3,04) € ¥ with s9, s3 € R arbitrary.

Setting
%:{(1‘171‘27%‘270):1}17%261&} and g:{(ov_y17y17y2):y17y2€R}7
we have R* = 2" @ %. Prove this as an exercise. <

Proposition 6.3. Let ¥ be a vector space over F and let & and % be
subspaces of V. The following statements are equivalent:

(a) The sum 2 + % is direct.
(b) For all z,y € ¥ we have

reX Nye¥% ANrx+y=0y = z=y=0y. (6.2)
(C) %ﬂ@:{(]ny}.

Proof. The implication in (6.2) is a special case of the implication in (6.1).
Letz € 27, lety € ¢, and assume x+y = 0y. Then we have x+y = 04 +0y,
and since 0y € 2 and 0y € %/, the implication in (6.1) yields z = 04 and
y = 0y. This proves (a) implies (b).

Assume (b). Let v € 2" N# be arbitrary. Since 2" N % is a subspace,
—ve X NY. Set x =v,y=—vin (b). Then (b) implies v = 04. This
proves (c).

Assume (c¢). We need to prove the implication in (6.1). Let z1,22 € 2
and y1,y2 € ¥ be arbitrary and assume that x1 + y1 = 22 + y2. Then by
algebra in ¥ we have

Oy = (21 +u1) — (z2 +y2) = (21— 22) — (y2 — v1).
Consequently,
Tl — T2 =Y2 — Y1-
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Since 2 is a subspace, 1 —x2 € £ and since % is a subspace, yo —y; € ¥.
Therefore,
r1—T2=1Y2— Y1 € %ﬂ@Z{an}.
Consequently, 1 = x9 and y; = y. This proves the implication in (6.1),
proving (a).
Since we proved (a)=(b)=-(c)=(a), the propositions is proved. O

Definition 6.4. Let ¥ be a vector space over F, let n € Nand let 27,..., Zn
be subspaces of . The sum 27 +---+ 2, is called a direct sum if for every
v e 21+ + Z, there exist unique z; € Z;, j € {1,...,n}, such that
v=ux1+ -+ x,. The direct sum is denoted by 27 @ --- ® Z5. <

The preceding definition of the direct sum of subspaces written as an
implication is as follows: For all x1,...,Zn,y1,...,Yn € ¥ the following
implication holds

n n
Vke{l,...,n} xp,yp € 2k A Zxkzzyk
k=1 k=1

= Vke{l,...,n} zp=yr. (6.3

Proposition 6.5. Let ¥ be a vector space over F, let n € N and let
21, .., Xy be subspaces of V. The following statements are equivalent:
(a) The sum Z1+ ---+ 2y is direct.
(b) For all x1,...,x, € ¥ the following implication holds

n
Oy/zzxk AN Vk € {1,...,TL} Tp € 2
k=1
= Vke {1,...,71} T = 0y. (6.4)
Proof. Assume (a). That is, assume that the implication in (6.3) holds.
Setting v = 0y and yi = 0y for all k € {1,...,n} in (6.3), the implication
n (6.3) becomes (6.4). This proves (a)=(b).
Assume (b). To prove the implication in (6.3), let z1,...,Zn, Y1, ..., Yn €
¥ be arbitrary and assume

n n
Vke{l,...,n} xk,ykE%k A Zxk:Zyk.
k=1 k=1

The preceding assumption yields

n

O“I/:Z(«Tk_yk) ANVEe{l,...,n} z—yp € k.
k=1
Now, by (6.4) we deduce
Vk € {1,...,71} zp — Y = Oy
This proves the implication in (6.3), proving (b).
The proposition is proved. O
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In the next theorem we prove that the Cartesian product of two vector
spaces with appropriately defined vector addition and scalar multiplication
is a vector space.

Theorem 6.6. Let ¥ and 2 be a vector spaces over F. Define the vec-
tor addition and scalar multiplication on the Cartesian product ¥ X Z as
follows. For allv,w € ¥, all x,y € Z and all « € F set

(v,2) + (w,y) = (v+w,z+y),  afv,z)=(av,a). (6.5)
The set V' x Z with these two operations is a vector space.

Remark 6.7. Notice that the first plus sign in (6.5) is the addition in ¥ x .2~
which is being defined, the second plus sign is the addition in ¥ and the
third plus sign is the addition in 2. <

Definition 6.8. The set ¥ x 2~ with the operations defined in (6.5) is
called the direct product of the vector spaces ¥ and 2. <

7. PROBLEMS

Problem 7.1. In Definition 1.2 we use the same symbol + to denote to
different additions; one addition is the addition of complex numbers in [,
the other addition is the addition of vectors in the vector space #. Similarly,
the usage of the blank space between two symbols is ambiguous; between
two complex numbers it means the product of two complex numbers, while
between a complex number and a vector in ¥ means scaling of that vector
by a complex number. As a learner you should pay attention and make sure
that you understand the meaning of the formulas that you are dealing with.

Let us introduce some “funny” names for the algebraic operations that
appear in Definition 1.2.

VectorPlus : ¥ x ¥ — ¥, Scale: Fx¥ — ¥
Plus: FxF — IF, Times: FxF — F.

Thus, for u,v € ¥ the sum of the vectors u and v is denoted by VectorPlus(u, v),
for « € F and v € ¥ the scaling of the vector v by «a is denoted by
Scale(a,v), for o, 8 € F the sum of the complex numbers « and § is de-
noted by Plus(a, ), and for «, 5 € F the product of the complex numbers
a and (3 is denoted by Times(a, 3).

Just to clarify, in this notation we have Plus(2,3) = 5 and Times(2,3) = 6.
The distributive law for complex numbers in this notation reads: for all
complex numbers «, 8 and v we have

Times(a, Plus(ﬁ,’y)) = PIus(Times(a7 B), Times(a,’y)).

Finally, your task in this problem is to rewrite the axioms SA, SD, SD,
and SO using the notation for the algebraic operations introduced above.

<
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Problem 7.2. Let R, denote the set of positive real numbers, set
¥V =Ry xRy = (Ry)?,
and let F = R. Define the addition and the scalar multiplication in ¥ as
follows: For all [ul] , [Ul] € ¥ and all a € F set
U V2

el =l welu] <[k

Prove that ¥ with the vector addition ¢ and the vector scaling ¢ is a vector
space over R. <

Problem 7.3. In this problem (—1,1) denotes the open interval of real
numbers. That is,

(-L,)={reR:-1<z A z<1}.
For w,v,z,y,z € R with x > 0 and z # 0 by

u+v, u—v, U, Q’ "
z

we denote the standard algebraic operations in R. Set ¥ = (—1,1) and let
F = R. Define the vector addition and the scalar multiplication

SV XYV =Y, S:Rx¥ -V
on ¥ by: For all u,v € ¥ and all a € R set

uHw I+ = (1—-v)“

udv= pyt. aQU_(l—i—v)a—i—(l—v)o"

Prove that ¥ with the vector addition ¢ and the scaling & is a vector space
over R. <

Problem 7.4. Consider the vector space R¥ of all real valued functions
defined on R. This vector space is considered over the field R. The purpose
of this exercise is to study some special subspaces of the vector space RE.
Let w € R be arbitrary. Consider the set

Sy 1= {f e R®:3Ja,b € R such that f(t) = asin(wt+b) Vte R}.

(a) Do you see exceptional values for w for which the set .7, is partic-
ularly simple? State them and explain why they are special. Here 1
used plural just in case that there are several special cases. However,
it is possible that there is only one special case for w.

(b) Prove that .7, is a subspace of R®. (Hint: Except for the special
case, this problem should be solved by writing the set .7, as a span
of two linearly independent famous functions. One should use only
basic trigonometry and polar coordinates.)

(c) For each w € R find a basis for .#,. Plot the function w +— dim .7,
with w € R.

(d) For all ¥,w € R calculate dim(.#}, N .7,).



12 BRANKO CURGUS

(e) Find all pairs (1, w) € R? for which .%; U.7, is a subspace of RE.
(f) For all 1, w € R calculate dim (.7 + A,). <

Some items in this problem belong to the next section of the notes.

Problem 7.5. Even and Odd Functions. Let D be a nonempty set. Let
FP be a vector space of all functions with the domain D and codomain F.
Denote by 2 C FP the set of all constant functions in FP. That is

.@:{fGIFD:EICG]F such that Vt € D f(t) = c}.
Let ¢ : D — D be a bijection. Set
& ={f €FP: f(p(t) = f(t) Vi € D},
O,={feFP: f(p(t)) = —f(t) Vt € D}.

Prove that &, and 0, are subspaces of FP.
Prove &,N 0, = {O]FD}.
Prove that for an arbitrary bijection ¢ : D — D we have I C &,.
(d) In this item we explore the extreme cases for &, and O,.
(i) Characterize the bijections ¢ : D — D such that &, = 2. (For
all s,t € D there exists k& € N such that p*(s) =t or ©*(t) = s,
that is the entire D is one cycle.)
(ii) Characterize the bijections ¢ : D — D such that &, = FP.
(ili) Characterize the bijections ¢ : D — D such that &, = {Opp }.
(iv) Characterize the bijections ¢ : D — D such that &, = FP.
(e) Explore if there is a relationship between the following three pairs
of subspaces
(i) &, O,.
(ii) &1, Opr.
(Here o1 : D — D is the inverse bijection of ¢ : D — D.)
(iil) Epop, Oiporp-
(f) Using the definitions and notation introduced earlier in this problem,
characterize all functions in the set &,@® 0. In particular, show that
&, ® O, can be written in a simple closed form using the notation
established in this problem.
(g) Determine a necessary and sufficient condition on the bijection ¢ :
D — D under which the decomposition RP = &, @ O, holds.

Notes:

(1) Parts of this problem are challenging. Exploring examples can guide
your thinking. Create your own examples and think through the
suggested examples below.

(2) Let D be an arbitrary nonempty set and let ¢(t) = ¢ be the identity
bijection on D. Describe &, and €, and think through the rest of
the problem in this trivial case.

(3) This problem is inspired by the concepts of odd and even functions,
which are first encountered in a precalculus class. In the precalculus
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setting we have D = R, F = R and ¢(t) = —t for all t € R. To
build intuition, it is instructive to first consider the given problem in
this familiar precalculus framework. In this setting, the prominent
examples of even and odd functions are many. The most notable
ones are the hyperbolic cosine and hyperbolic sine:

cosh(t) = é(exp(t) +exp(—t)), VteR,

1
sinh(t) = i(exp(t) —exp(—t)), VteR.
Verify that cosh is an even function and sinh is an odd function.
Furthermore, verify and internalize the fundamental identity

e' = exp(t) = cosh(t) + sinh(t), VteR.

Let a € R. Consider D = R, F = R and ¢(t) =t + a. Describe &,
and 0,. What is ¢ o 9?7 What is the relationship between &,, O,
Epop, and Opo,?

Let D = {1,2,3}, F = R. There are six bijections on D:

Lt [ or(t) [ walt) | w3(t) [ @a(t) | @5(t) | we(t) ]
1 1 1 2 2 3 3

2 2 3 1 3 1 2

3 3 2 3 1 2 1

Choose, one, two, or more of these bijections and explore questions
asked in the problem for those bijections.

Let D = {1,2,3,4}, F = R. There are twenty-four bijections on D.
In the table below, for n € {1,...,24} instead of ¢, (t) we simply

write n.
]t\\1\2\3\4\5\6\7\8\9\10\11\12\13\14\15\16\17\18\19\20\21\22\23\24\
1|(1]1{1|1(1]|1]|2(2]2]2(2|2|3|3|3|3|3|3|4|4|4|4|4]|4
21121213(34|4|11(1(3| 3|4 |4|1|1|2|2|44|1|1|2|2]|3]3
311314|2(4|2(3|3|4|1] 4132414122 |3[1[3|1]|2
4(|413|412|3(2|14(3(4]1|3|1|4|2|4|1|2|1|3|2|3|1|2]|1

Choose, one, two, or more of these bijections and explore questions
asked in the problem for those bijections.

Let n € N\ {1}. Let D = {1,...,n} x {1,...,n}, F = R. With
this special choice of D, the vector space RP can be identified with
the vector space R™*™ of all real n x n matrices. With this choice
of D, discover a bijection ¢ : D — D such that &, is exactly the
set of all symmetric n X n matrices. For the bijection ¢ that you
discovered, characterize the matrices in &,. Explore online whether
the matrices in &, have a common name associated with them.

<
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Problem 7.6. Let ¥ be a vector space over F. Let % and # be subspaces
of ¥. Prove that % U # is a subspace of ¥ if and only if Z C # or
W CU. <

Problem 7.7. Let ¥ be a vector space over F and let n € N, n > 2. Let
U, ..., %, besubspaces of . If the union 24 U- - -U%,, is a subspace, then

U CU\U---UU, or U, CU---UJU,_1. (7.1)
<

Proof. We will prove the contrapositive. Assume that (7.1) is not true. Then
there exist u; € % such that u; € %; for all j € {2,...,n} and there exist
U, € Uy such that u, & %; for all j € {1,...,n—1}.

Let a € F\ {0}. Then au,, € %, since %, is a subspace and, since o # 0,
au, € % for all j € {1,...,n—1}.

Since u; € 24 and au,, € % we have u; + au, ¢ 2 for all a € F\ {0}.

Since uy € U, and au, € %, we have ui + au, & %, for all a € F.

Let m € N be such that 1 < m < n. (Since n > 2 such m exists.) By the
choice of u; and w, we have u; & %, and au, & %, for all a € F\ {0}.
Therefore, for at most one a € F \ {0} we can have uj + au, € %,. (If
up + oy € Uy, and uy + PBu, € Uy with a — 8 # 0, then (u; + auy,) —
(u1 + Buy) = (o — Buy, € Uy with a — 8 # 0 and w,, € %y, which is a
contradiction.)

Thus, for at most n — 2 numbers « € F \ {0} we have

u +au, € 24U ---U,.
Since the set F\ {0} is infinite, there exists o € F \ {0} such that
ul + quy € U \U - U YUy
Recall that
UL, Uy € 2 U - U Yy,
The last two displayed relations show that %4 U - - - U %, is not a subspace
of V. O

Problem 7.8. Let ¥ be a vector space over F and let n € N. Let 24, ..., %,
be subspaces of #'. Prove that the union 24 U- - -U%,, is a subspace if and only
if there exists m € {1,...,n} such that %, C %, for all k € {1,...,n}. <

Problem 7.9. [Samantha Smith] Let ¥ be a vector space over F. Let
P (V) be the power set of ¥, that is the set of all subsets of #. Set
W = P2(V)\ {0}. Let the addition and scaling in # be defined as in
Section 4. Is # with these two operations a vector space over F? <

Problem 7.10. Let ¥ be a real vector space, that is a vector space over R.
Set
"f/(c =¥ xV.

Define the vector addition in #¢ as follows: For all (u,v1), (ug,v2) € ¢ set

(ur,v1) + (u2,v2) = (u1 + ug, v1 + v2).
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In 7¢, define the vector scaling with complex numbers as follows: For all
(u,v) € ¥¢ and all a, B € R set

(o +iB)(u,v) = (au+ Bu, av + Bu).

(a) Prove that ¢ with the vector addition and the vector scaling with

complex numbers defined as above is a complex vector space.
(b) Prove that function

J:7V = ¢
defined by
Yoe? TJ(v)=(v,0y)
is an injection which has the following property:
Va, € R Yu,v € ¥ T(au+ Bv) = ad(u) + 8I(v).

The mapping J is called the natural embedding of ¥ into .
(¢) The range of J is the following subset of ¥¢:

{(’U,Oy/) eYc:ve 7/} =7 x{0y}.

Prove that the set ¥ x {0y} is not a subspace of 7¢.
(d) Prove that for all u,v € ¥ we have

(u,v) = (u,09) +1i(v,0y). <

Remark 7.11. (i) The complex vector space ¥¢, defined in Problem 7.10,
is called the complezification of the real vector space 7.
(ii) Based on item (b) in Problem 7.10, it is common to identify the
subset
{(U,Oﬂ//) €EVc:ve 7/} =7 x {0y}
with the set #. With this identification, based on item (d) in Prob-
lem 7.10 we can write

Y=V +iV7.

(iii) Let n € N. Applying the definition of ¥¢ to the real vector space
R"™ and using the observation in the preceding item we obtain that
Ve = C™; that is
(R")c = C7;
or in words: The complexification of the real vector space R™ is the
complex vector space C".

The beauty of Problem 7.10 lies in its universality: any real vector space
¥ is embedded into a naturally defined complex vector space #¢. This
construction allows us to study real vector spaces using the powerful tools
that we will develop for complex vector spaces. <
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